SEMESTER I & II

PCPHH20 - ELECTRONICS LAB

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: I	PCPHH20	Electronics Lab	Lab	Core	3	4	100
& II							

Course Objectives

- 1. Students will learn and understand the Basics of digital electronics.
- 2. To analyze logic processes and implement logical operations using combinational logic circuits.
- 3. To understand concepts of sequential circuits and to analyze sequential systems.
- 4. To analyze the different RC and LC oscillator circuits to determine the frequency of oscillation

Course Outcomes (CO)

- 1. Identify the various digital ICs and understand their operation.
- 2. Develop a digital logic and apply it to solve real life problems.
- 3. Analyze, design and implement combinational logic circuits.
- 4. Analyze, design and implement sequential logic circuits.
- 5. Design the different oscillator circuits for various frequencies.

CO		PSO									
CO	1	2	3	4	5	6					
CO1	Н	М	М	Н	М	М					
CO2	Н	М	М	Η	Н	Н					
CO3	Н	L	Н	Μ	L	М					
CO4	Н	L	Н	Μ	М	Н					
CO5	Н	L	Н	М	L	М					

СО	РО								
	1	2	3	4	5	6			
CO1	Н	Н	Н	Н	Μ	Н			
CO2	Н	Н	Н	Н	Μ	Н			
CO3	Н	Н	Н	Н	Μ	Н			
CO4	Н	М	Н	Н	Н	Н			
CO5	М	М	М	М	Μ	Н			

(Any 18 experiments)

List of experiments (K1 - K6):

- 1. V-I Characteristics of SCR and TRIAC.
- 2. Study of Rectifiers using C, L-C and Pi filters.
- 3. Study of Voltage Current characteristics of UJT & UJT as a Relaxation Oscillator.
- 4. FET as amplifier frequency response, input impedance and output impedance.
- 5. Study of V-I Characteristics of J-FET as a VVR (Voltage Variable Resistor).
- 6. Study of V-I Characteristics of MOSFET.
- 7. Op-amp Voltage follower (Inverting) summing, difference, average amplifier- differentiator and integrator.
- 8. Op-amp Solving simultaneous equations.
- 9. Op-amp Design of square wave generator, triangular wave generator and saw tooth wave generator.
- 10. Op-amp 4 bit D/A converter Binary Weighted Resistor method and R-2R ladder method
- 11. Op-amp Design of active Low pass, High pass, Band Pass and band rejector filter.
- 12. Op-amp Study of attenuation characteristics and design of Phase Shift Oscillator.
- 13. Op-amp Study of attenuation characteristics and design of Wien Bridge Oscillator.
- 14. IC 555 Construction of Monostable Multivibrator, Frequency Divider
- 15. IC 555 -Design of Schmitt Trigger and hysteresis.
- 16. IC 555 Construction of Astablemultivibrator and Voltage controlled Oscillator
- 17. Design of Synchronous and Asynchronous Counters using IC-7476/7473.
- 18. Construction of 4 bit Shift Register Ring Counter and Johnson Counter IC7476
- 19. Study of i) Multiplexer and using IC 74150

ii) De-Multiplexer using IC 74154

- 20. Arithmetic operations (Adder/Subtractor) Using IC 7483.
- 21. Modulus counter using IC7490 and display using IC7447.
- 22. Phase locked loops using IC 555.
- 23. Binary adder abdSubtractor using EX-OR and NAND gates.

SEMESTER III

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: III	PCPHK20	Microprocessor	Theory	Core	5	4	100
		and					
		Microcontroller					

Course Objectives

- 1. To make the students understand the concepts that are involved in the Microprocessor 8085 and Microcontroller 8051.
- 2. To make the students understand instruction sets, addressing modes, timings, memory and I/O interfaces.

Course Outcomes (CO)

- 1. Describe Hardware, different bus cycles and memory interface to 8085 Microprocessor.
- 2. Develop programs using 8085 Microprocessor Instruction set and addressing modes.
- 3. Describe and perform different types of peripheral interfaces to 8085 Microprocessor.
- 4. Explain hardware, instruction set and addressing modes of Microcontroller 8051 and develop programming for basic operations.
- 5. Describe and perform different types of external interfaces to 8051 Microcontroller.

СО		PSO								
	1	2	3	4	5	6				
CO1	Н	L	L	М	М	М				
CO2	Н	Н	L	М	М	М				
CO3	Н	М	L	М	М	М				
CO4	Н	Μ	L	М	М	М				
CO5	Н	Μ	L	М	М	М				

СО		РО								
	1	2	3	4	5	6				
CO1	Н	М	L	М	М	М				
CO2	Н	Н	Н	М	М	М				
CO3	Н	Н	L	М	М	М				
CO4	Н	Н	Н	Μ	М	М				
CO5	Н	М	L	М	М	М				

(Low - L, Medium – M, High - H)

Unit I: 8085 Microprocessor- Architecture, Instruction set and Programming (12 Hours)

- 1.1 Architecture- Functional pin diagram (K2)
- 1.2 Buses Address bus, data bus, multiplexing address/data bus (K2)
- 1.3 Instruction format-instruction fetch and execution-Machine and instruction cycle- T state-(K2)
- 1.4 Addressing modes- Instruction set data transfer group- arithmetic/logic group (K2)
- 1.5 Branch group stack and I/O control instruction (K2)
- 1.6 Programming: Picking up Largest / smallest number Arranging an array in ascending / descending order Code conversion: Binary to BCD and BCD to Binary, Binary to ASCII, ASCII to Binary and ASCII to BCD and BCD to ASCII (K3, K6)

Unit II: 8085 Microprocessor- Memory and I/O interfacing (12 Hours)

- 2.1 ROM and RAM memory Memory interface: 2K X 8, 4K x 8 ROM and RAM interface(K2)
- 2.2 8255 Programmable interface I/O –functional Pin configuration- Internal Architecture (K2)
- 2.3 Interfacing of 8255 (K2)
- 2.4 ADC interface DAC interface wave form generator (K2, K3, K6)
- 2.5 Hex keyboard interface 4 step Stepper motor interface (K2, K3, K6)
- 2.6 Traffic regulation interface (K2, K3, K6)

Unit III: 8051 Microcontroller-Architecture, Instruction set and Programming (12 Hours)

- 3.1 Introduction to Microcontroller –8051 Functional pin diagram (K2)
- 3.2 Architecture Internal registers (K2)
- 3.3 Special function registers -Memory organizations (K2)
- 3.4 Instruction set Addressing modes (K2)
- 3.5 Programming Addition and Subtraction -Multiplication and Division (K3, K6)
- 3.6 Arranging an array in ascending/ descending order -Sorting out the maxima and minima (K3, K6)

Unit IV: 8051 Microcontroller - Memory and I/O interfacing (12 Hours)

- 4.1 8051 Input/output Ports (K2, K3)
- 4.2 8051 Interrupts (K2, K3)
- 4.3 Interface 8051 to external memory and I/O devices using its I/O ports (K2, K3)
- 4.4 Counters and Timers –Serial communication using MAX232 (K2, K3)
- 4.5 Interfacing 8051 with ADC –DAC (K2, K3, K6)
- 4.6 LED Display Hex Keyboard (K2, K3, K6)

Unit V: Sensor Based Embedded Controller & IoT Applications (12 Hours)

- 5.1 Working principle of Sensors/Transducers: Light sensor LDR, Heat sensor LM35, IR Transmitter/ Receiver module (K2)
- 5.2 Embedded system concept–Architecture & salient features of ATmega328 (K2)
- 5.3 Programming & compiling with IDE software Motor driver IC LM339 (K2, K3)
- 5.4 Blue tooth controller HC05 for wireless communication (K2, K3)

- 5.5 IoT applications for automation : Light activated Morning alarm Darkness activated Garden Lights Heat activated Fire alarm (K3, K6)
- 5.6 Intruder alarm using IR Android mobile touch key pad controlled Robot car (K3, K6)

Books for Study:

- 1. R.S. Gaonkar Microprocessor Architecture, Programming and Application with the 8085, 3rd Edition Penram International Publishing, Mumbai, 1997.
- 2. V.Vijayendran Fundamentals of Microprocessor 8085 Architecture, Programming and interfacing Viswanathan Publication, Chennai, 2002.
- 3. N. NagoorKanni- Microprocessor and Microcontroller –2nd Edition Tata McGraw Hill EducationPvt. Ltd., New Delhi, 2017.
- 4. Muhammed Ali Mazidi and Janice Gillespie Mazidi- The 8051 Microcontroller and Embedded Systems, Fourth Indian Reprint Pearson Education, 2004.
- 5. Kenneth J. Ayala The 8051 Micro Controller Architecture, Programming and Applications, 3rd Edition West Publishing Company, 1991.

Books for Reference:

- 1. B. Ram Fundamentals of Microprocessors and Microcomputers DhanpatRaiPublications, New Delhi, 2005.
- 2. R. Thiagarajan, S. Dhanasekaran and S.Dhanapal Microprocessor and its Applications, New Age International, New Delhi, 2010.
- 3. John B. Peatman Design with PIC Microcontrollers, 7th Indian Reprint Pearson Education, 2004.
- 4. Raj Kamal Introduction to Embedded Systems TMS, 2002.

SEMESTER III

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: III	PEPHE20	Numerical	Theory	Core	5	4	100
		Methods and		Elective			
		C-Programming					

Course Objectives

- 1. To impart the knowledge of numerical methods for solving problems arise in physics
- 2. To equip the students with the skill of C language.

Course Outcomes (CO)

- 1. Understand and apply numerical concepts to solve equations and find missing values for any physical problems
- 2. Solve ordinary differential equations using numerical techniques
- 3. Understand the basic concepts of C Language
- 4. Understand and use various operators and arrays in C Language
- 5. Develop simple programs using C language along with computational tools

CO		PSO									
CO	1	2	3	4	5	6					
CO1	Н	Н	Н	Μ	L	L					
CO2	Н	Н	Н	Μ	L	L					
CO3	Н	L	L	Μ	М	М					
CO4	Н	L	L	Н	М	М					
CO5	Н	Μ	М	Н	М	М					

CO		РО								
CO	1	2	3	4	5	6				
CO1	Н	Н	Η	Μ	L	L				
CO2	Н	Н	Η	Μ	М	М				
CO3	Н	Н	L	Μ	М	М				
CO4	Н	Н	M	L	L	L				
CO5	Н	Н	Μ	Μ	М	М				

(Low - L, Medium – M, High - H)

Unit I: Solution of Equations and Interpolation

- 1.1 Methods of false position (K2, K3, K4, K5)
- 1.2 Newton's method (K2, K3, K4, K5)
- 1.3 Fixed point Iteration method (K2, K3, K4, K5)
- 1.4 Interpolation Lagrangian polynomials (K2, K3, K4, K5)
- 1.5 divided differences (K2, K3, K4, K5)
- 1.6 Newton's forward and backward difference formulae (K2, K3, K4, K5)

Unit II: Numerical Differentiation, Integration and Differentiation Equations(16 Hours)

- 2.1 Derivatives Newton's forward / backward interpolation and Stirling formula (K2, K3, K4, K5)
- 2.2 Numerical integration by Trapezoidal Solutions of equations (K2, K3, K4, K5)
- 2.3 Simple iterative methods Newton method (K2, K3, K4, K5)
- 2.4 Numerical Integration Simpsons 1/3 and 3/8 rules (K2, K3, K4, K5)
- 2.5 Solution to first order differential equations: Taylor series method (K2, K3, K4, K5)
- 2.6 Euler and modified Euler methods Runge-kutta method (K2, K3, K4, K5)

Unit III: Programming in C

- 3.1 Introduction Basic structure of C Programming (K1, K2)
- 3.2 Character set Key words (K1, K2)
- 3.3 Identifiers (K1, K2)
- 3.4 Variables (K1, K2)
- 3.5 Assigning values to variables (K1, K2)
- 3.6 Symbolic constant (K1, K2)

Unit IV: Operators, Arrays and Strings

- 4.1 Operators Arithmetic, relational, logical, assignment, increment (K1, K2)
- 4.2 Decrement conditional and special type conversion in Expressions (K1, K2)
- 4.3 Arrays Multi dimensional arrays(K1, K2)
- 4.4 Initializing two dimensional arrays (K1, K2)
- 4.5 Initializing string variables (K1, K2)
- 4.6 Reading and writing Strings on the Arithmetic operations on strings (K1, K2)

Unit V: Simple Programmes

- 5.1 User defined functions their needs Multi function programme (K3, K6)
- 5.2 Return values and their types Calling functions (K3, K5, K6)
- 5.3 Categories of functions Multiplication (K3, K5, K6)
- 5.4 Diagonalization and inversion Solution and C programming (K3, K5, K6)
- 5.5 Lagrangian interpolation Simpson's rule (K3, K5, K6)
- 5.6 Euler method- Runge- Kutta method (K3, K5, K6)

(14 Hours)

(13 Hours)

(14 Hours)

(15 Hours)

Books for Study:

- 1. T. Veerarajan and T. Ramachandran, Numerical Methods with Programming in C, Second Edition, Tata McGraw Hill, 2007
- 2. E. Balagurusamy Computing Fundamentals and Programming, ANSI C, 3rd Edition Tata McGraw Hill Education, Ltd., 2014.
- 3. G. Balaji Numerical Methods, 9th Edition G. Balaji Publishers, Chennai, 2008.

Books for Reference:

- 1. S. Kalavathy, M. JoicePunitha Numerical Methods, 2nd Edition Vijay Nicole imprints Pvt. Ltd., 2010.
- 2. Kandasamy P., K. Thilagavathy and K. Gunavathy, Numerical Methods, S. Chand Co. Ltd., New Delhi, 2003.
- 3. A. Singaravelu, Numerical Methods, Meenakshi Agency, 2016.

SEMESTER IV

Year: II	Course Code:	Title of the Course:	Course Type:	Course Category:	H/W	Credits	Marks
Sem: IV	PCPHO20	Practical III: Advanced General Experiments	Practical	Core	4	4	100

PCPHO20- PRACTICAL III: ADVANCED GENERAL EXPERIMENTS

Course Objectives

1. To provide the student hands-on experiences to conduct advanced general experiments in laboratory in lieu with the theory taught in the class.

Course Outcomes (CO)

- 1. Interpret and appreciate the advanced concepts in physics.
- 2. Use scientific equipment for analysis and data acquisition.
- 3. Analyse the properties (electric, magnetic, nuclear and dielectric) of solids/liquids.
- 4. Apply acquired knowledge to the analysis of experimental data.
- 5. Get exposure to work environment at research level and motivation for a lifelong learning.

CLO	PSO						
	1	2	3	4	5	6	
CLO1	Н	L	Н	L	Н	Н	
CLO2	М	Н	L	Μ	Н	Н	
CLO3	Н	Н	Н	Μ	Н	Н	
CLO4	Н	М	Н	L	Н	Н	
CLO5	L	М	L	L	Н	Н	

CLO	РО						
	1	2	3	4	5	6	
CLO1	Н	Н	Н	Н	Н	Н	
CLO2	Н	Н	М	Μ	Н	Н	
CLO3	Н	Н	Н	М	Н	Н	
CLO4	Н	М	Н	М	Н	Н	
CLO5	Н	Н	Н	Н	Н	Н	

(Low - L, Medium – M, High - H)

(Any 15 experiments) (K1 - K6)

- 1. G.M. Counter characteristics, Inverse square law.
- 2. G.M. Counter Absorption co-efficient.
- 3. Determination of Carrier Concentration Hall Effect.
- 4. Determination of Volume Susceptibility of a liquid by Quincke's method.
- 5. Determination of Mass Susceptibility of a liquid by Guoy's method.
- 6. Michelson Interferometer -Wavelength and separation of wavelengths.
- 7. Michelson Interferometer Thickness of mica sheet.
- 8. F.P. Etalon using Michelson set up.
- 9. Determination of Wave length of Laser Beam.
- 10. Ultrasonic Interferometer Velocity and Compressibility of a liquid.
- 11. Ultrasonic Diffraction Velocity and Compressibility of a liquid.
- 12. Determination of Planck's constant.
- 13. B-H curve using CRO.
- 14. Salt Analysis using Spectrograph CDS
- 15. Dielectric constant of liquids and solids by capacitance method.
- 16. Determination of coefficient of coupling by AC bridge method.
- 17. Impedance measurement using LCR bridge.
- 18. Four probe method Determination of conductivity of thin films.
- 19. Determination of dielectric loss using CRO.
- 20. Laser diode characteristics.

SEMESTER IV

PCPHP20 - PRACTICAL- IV MICROPROCESSOR, MICROCONTROLLER AND C PROGRAMMING

Year: II	Course	Title of the Course:	Course	Course	H/W	Credits	Marks
	Code:	Microprocessor	Type:	Category:			
Sem: IV	PCPHP20	Microcontroller	Practical	Core	4	4	100
		& C-Programming					

Course Objectives

- 1. To provide the students hands on training of programming knowledge on Microprocessor, Microcontroller and C language.
- 2. To make the students develop the assembly language programs for arithmetic and peripheral interface operations.

CourseOutcomes (CO)

- 1. Develop assembly language programs on arithmetic and sorting operations using 8085 and 8051
- 2. Develop and perform peripheral interface programs with 8085 Microprocessor
- 3. Perform all code conversions and analog signals into digital and vice versa. Also can generate wave forms.
- 4. Write C program for any basic operations
- 5. Solve any physical problems using C language along with numerical techniques

CO	P S O									
	1	1 2 3 4 5 6								
CO1	Н	М	Н	Μ	Н	М				
CO2	Н	М	L	Н	Н	М				
CO3	Н	М	L	L	М	М				
CO4	Н	L	М	М	М	М				
CO5	Н	М	М	Η	Н	М				

СО	P O									
	1	1 2 3 4 5 6								
CO1	Н	Н	Н	М	Μ	М				
CO2	Н	Н	Μ	Н	Μ	М				
CO3	Н	М	L	L	Μ	М				
CO4	Н	Н	Μ	М	Μ	М				
CO5	Н	Н	Μ	Н	Μ	М				

(Low - L, Medium – M, High - H)

Course Syllabus

(Any 20 experiments)

Microprocessor 8085 Programmes (K1 - K6)

- 1. Addition & subtraction and Multiplication & Division of 8-bit hexadecimal numbers.
- 2. Square and Square Root of 8-bit hexadecimal numbers.
- 3. Picking up Largest and Smallest number in an array of 8-bit hexadecimal numbers.
- 4. Arranging an array of 8-bit hexadecimal numbers in Ascending and Descending orders.
- 5. Code Conversion of Binary to BCD and BCD to Binary, Binary to ASCII and ASCII to Binary and BCD to ASCII and ASCII to BCD.
- 6. 8-Bit and 16-Bit BCD Addition.
- 7. Addition of Array of 8-Bit Numbers.
- 8. Digital Clock Program for 12 / 24 Hours.
- 9. Analog to Digital Conversion and ADC Interface.
- 10. Digital to Analog Conversion Wave form Generator DAC Interface.
- 11. Keyboard Display Interface.
- 12. Stepper Motor Interface.
- 13. Traffic regulation interface
- 14. Dynamic message display
- 15. 8255 I/O Display interface

Microprocessor 8086 Programmes

- 1. 16-Bit Addition & subtraction and Multiplication & division.
- 2. 16-Bit Ascending and descending order.
- 3. Computation of LCM.
- 4. Factorial of a number.

Microcontroller 8051 Experiments

- 1. 8-Bit Addition and Subtraction
- 2. 8-Bit Multiplication and Division.
- 3. Sorting in ascending and descending order.
- 4. Sorting out the maxima and minima.

Computation Methods - C Programming

- 1. Lagrange interpolation with algorithm, flow chart with program and its output
- 2. Numerical integration by Simpson's rule with algorithm and flowchart with program and its output.
- 3. Numerical solution of ordinary first order differential equation -Euler's method with algorithm, flowchart and its output.
- 4. Numerical solution of ordinary first order differential equations by the Runge- kutta method, with algorithm, flow chart with program and its output
- 5. Curve fitting Least square fitting with algorithm, flowchart and its output.